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I. IntroOlction. In this paper we study the convergence and limit distribution

of the centered sums

n
(1.1) Z H{.y, y .) - A

j l

in connection with series representations of infinitely divisible random

vectors. Here . " is a sequence of arrivial times in a Poisson process,

is a sequence of i.i.d. random elements, which is independent of {y'
.,

and Hi is a aanach space valued function.

Series represertations involving arrival times in a Poisson process have

been given by Ferguson and Klass 14], for real independent increment processes

without Gaissian components. Kallenberg 18] showed the uniform convergence in

the Ferguson-Klass decomposition and Resnick 11B] related the decomposition

to the well-known Ito-Levy representation of processes with independent incre-

ments. A series representation of Hilbert space valued stable random vectors,

that generalizes the Ferguson-Klass representation of one-dimensional stable

random variables, has been established by LePage, Woodroofe and Zinn [12).

LePage £10] observed that symmetric stable random vectors can be represented

as conditionally Gaussian. This important property has been generalized and

extensively used by Marcus and Pisier [153 in their investigation of continuity

of stable processes. Marcus and Pisier's work [153 showed the significance of the

series decompositions in the study of stable probability measures on general

Banach spaces (see also £5], £23, (19) and 1213). We refer the reader to [15)

for a rigorous proof of the representation of symmetric stable vectors with

values in arbitrary Banach spaces. A generalization of the one-dimensional

Ferguson-Klass representation to the case of random vectors taking values in

Banach spaces of cotype 2 is due to LePage 11]. Since this assumption on

L
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the geometry of Banach spaces is too restrictive for many interesting applications

of the representation (e.g. for studying the continuity of stochastic processes),

it is necessary to investigate series developments without any restrictions on

the Banacn spaces. The validity of the LePage representation for certain

symmetric infinitely divisible random vectors in general Banach spaces was

stated by Marcus 114] (techniques similar to those of [15) can be used in that

case, the general non-symmetric distributions considered here require different

methods).

The main goal of the present paper is to give a simple and general scheme

of derivirg series representations of arbitrary Banach space valued infinitely

divisible random vectors. Our approach uses an idea of Vervaat [22] who obtained

the Ferguson-Klass decomposition of positive random variables as a particular

case of a shot noise (for more information about shot rcise see £22] and re-

ferences therein). Since only a very restricted subclass of infinitely divisible

probability measures can be represented by means of a shot noise (see Corollary

4.3(iii)), we introduce and study a gc.a:e4.6 hot noize, which is defined

as the a.s. limit of the centered sums (1.1). We obtain a full characterization

of the convergence to a generalized shot noise in Section 2. In Section 3 we

discuss certain special cases of the generalized shot noise and resulting
simplifications in the centeres An . The results of Section 2 and 3 are

applied to derive series representations of infinitely divisible random vectors

in Section 4. This approach enables us to obtain various series represent-

ations, which generalize those of LePage .[11], in a unified way, while avoiding

many obscurig details due to specific forms of the function H is concrete

situations.

0
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Finally we would like to mention something about the methods in this paper.

To determine the convergence in (1.1) we use a slight modification of the

technique previously employed by Ferguson-Klass t4] who transformed certain

dependent summand series into independent ones. The modification is that

we associate with (1.1) a continuous time, independent increment, stochastic

process, instead of the discrete time one, so that (1.1) is obtained by a

random tire substitution. This approach gives the results on the LP-convergence

"r-e .iae'y v'see Ccr:zlary 2.5), and reveals a martingale structure of the

Cecomposi:icn (see Corollary 4.3(iv) and Theorem 3.1).

'.

1U
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2. The Ccnvergence and distribution of a generalized shot noise.

We recall and complete some notation that will be used throughout the

paper. i; 4.j is a sequence of i.i.d. random elements taking values in a
) -X B

measurable space (0, 2),with the common distribution Z(&. = i .B

JN(t) > is denoted a Poisson process with parameter I and -Yj is the jth

arrival time of N(t) . i.e. ;=inf- ,t > 0: N(t) - Ji j z 1, 2,....

'UjX=1stands for a sequence of i~i~d. uniform on (0. 1) random variables.

We assu- e that :,:j' : 1 -N(t)-> and {U j =1  are defined on the same

probab'>,y space ( ,P) and they are mutually independent.

in ordier to use the method of Ferguson and Klass 14] mentioned in the

Introduction we shall need the following leimma which in the case X = can

be deducedi from Lemma 214] and then easily extended to the case when 1, is

a separable Banach space. Since this lemma constitutes the first important

step of the method and also may be of independent interest, we shall give

below a straightforward and different proof in a more general case.

* ~LEMMA 2.1. LczX (X, 1) bc~ a rcats~.442. vec.tot 6pace antd Ze-t G: (0. )

C 6eb a measutb~z map. TII. the Z-vaZued cstvt.r p'wcess g-'ei by

N( t)

X( xt) G~j &j) t t>0

has Ltdepenidebnt Li-emit and

+ s) - X(s)) 2.: Nit) + *2 j t~ l)
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P:.4 Let . cl (N ( s s < t) and /) = ~ .. u

(2.1) t = A i:Afl {N(t) <k! F/l ) vy7(2) for every k > I}
tt k

Then {Yt, is an increasing filtration and {X(t)lt1 is adapted to this

fil tratior.

In order to prove that {X(t)l1~ has independent increments it is enough

to show that I--X(t+s) -Y(s)) and Fs are independent for every t, s > 0

Let A e T and B .e.Z We get

PIX(t-s) - X(s) I- B, A"

(2.2) 2 P:X(t+s) - X(s) 4 B, N(s) = i , N(s+t) =i+k, A]-=
i ,k>O

L L I G(~. &j) e B, N(t+s) - N(s) = k ,',.
1,k>0 jzi+l 1

where A. = {N(s) = i, A, g.70 v.F(. by (2.1). Since
S 1

i+k i+k
r ~ ) = I G(s + -Yj4 l

jzi+l J-l+l

where "Yl is the nith arrival time in the Poisson process N~l) (u)
m~ i.k

N(u+s) - N(s) ,u > 0 , we conclude that the events A1i and I I G(Y. . B,-

N(t+s) - N(s) =k' are independent. Therefore the last expression in (2.2) is

equal to

pr G(s+-7. % B ,N''t k) P(A)
i,k>0 =

9'r

KIN
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k P1's - B , N~ l)(t) = k _- P(A )

i k~oO Mi~= RI fl

k Nt
P G(s+-. .,)EB, N(t) =kYP(A) = .Njt)G~s+-yj,& B}P(A)

k>O j=1 ~=

which proves the independence of c(X(t+s) -X(s)) and F s as well as the
Nit)

equal ity _( X( t+s) - X(s)) I.2 G(s+-y.~)

In tl-e proof of the second part of the lemma we shall use the well-known

fact that the condtional distribution of (-y1, ... IN(t) ) given that

Nfkt') k 1 is equal to the distribution of (tU( 1)- ...- tU(k) ) , where

U U) is the j thorder statistic of U1, ... 9U We have, for every

N~t)
P*"X(t+s) - X(s) BI P, G(s+)-i. C )e B!

00 k k
P!7 G(s+tUj.) 4. B-' -t 

k=O j=l j '

cc k tk
k0 P1 G(s+tU )e B) ~- et

N(t)
P G(s+tU. & 4 eB}
j=l ~

which completes the proof.

LEMMA 2.2. Lhtdct .the nctoatcns o' Lemma 2.1, ij (X .) R, ~p then

(i) EX(t) = (tf Du v)),(dv)du,
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(ii) E exp[iX(t)) expl' rt [e iG(u~v)_ 1)\(dv)du':
10 4D

Pc.By Lemma 2.1 we get

N(t)
EC X(t) = EC G(tU.. i)

j=l

k

k0E[ G(tU., j.)I(N(t) = Q])

Sk tEG(tU1  ~ t e- =

01tEV~tU1  t' = t G(ts, v))(dv)ds=

ft I G(u, v))X(dv)du

which gives (i). The proof of (ii) is similar.

The method of random time substitutuon will require the existence of the

limit as t -- for almost every sample path of the associated stochastic pro-

cess. The next lemma will be useful for this purpose. Its proof is

routine and will be omitted.

LEMMA 2.3. Le~t {Y(t)}t> be a .6ocwstic p'zoce6, wifJL va.Zue icn a .5epaazabte

mct'Ze s~pace and whc.6e sampZe paths a~ Lgt-ccntiuotjz. Tilen lim Y(t, (io)

exst So a.ec. w 16 and cn.Zi iL6 So eve'y incAeazing 6eqLutnee ft 1 n

WzitL Ilim t the 5equen~e MVt )IM covg d.6
n-l Inn~



To strte and prove the main result of this section we shall need some

notation tI-at will be also used throughout this paper. E will stand for a

separable Banach space with the norm 11-11 and B = {x e E: x!; :. r
rI

r, > Q(B,= E) .The duaal of E will be denoted by E' and (x',x)S

x'(x) , x E' x E.

We rpcall that a measure M on 2Ewith M({O}) = 0 is said to be a

Levy measu-e if for every x' Ej E' , f(x',XN 2 A 1 )M(dx) < and for some

(each) r (C', x)the function r defined by

rx) exp< [e I.X - 1*- i(x"X'IB(x)]M(dx)l

x' e E' , -s characteristic function of a probability measure on E . The

probability measure with characteristic function rwlbedntdy

crpzs' * :see: deAcosta at al. [1J).- 'Af V is a Levy measure and additionally

x'*x < :'x'M(dx) < ,res-ectively), then we define c Pois(M)
BC B1

(c 0Pois(M), respectively) as a probability measure with characteristic function

cc C~ respectively).

Let H:(O, ~)~ D -~ E be a Borel measureable map and define a measure F

of nE by

(2.5) F(A) I A r )H~u v))X(dv)du , A 62

J 0 1D A{}H

Note that F({0,) = 0 . Put

A~t) i= H(u, v)I B (H(u, v))>,(dv)du, t 5 0
.0 D
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THEOPEM 2.4. Lct T :j) -, . Thc : U IT ~cnvet9ez a.s. in, the
n ' j n n

vc. ~ E ori. L,:l . F 4U' , ci:ytza:zo E Fthzct, i6 F is a

Lvmc~,j aizd T. 1 im T n he
n-

= w c1 Pois(F)

p~-. Let

N t)

X -,t) = H(.. )- A(t) ,t > 0

By Lemma 2.1 {X(t)-t> is an independent increment E-valued stochastic process

with right-continuous sample paths. Using Lemma 2.2(ii) we get

(2.6) (X(t)) =clPois(Ft)

where

(2.7) F (A) = tt . v)) (dv)du ,A 2
JO JD A\{O}1H E

(note that F(t)(E) = t <

Assume first that F is a Levy measure. Since F~t F ast

we get

c Pois(F(t)) =clPois(F) as tjL

(see deAcosta et al . Theorem 1 .6). Hence, by It-Nisio Theorem ([7], Theorem 1) and (2.6),

{X(tn! )'l converges a.s. for each ti < t2< ... < t~ n~~ In view of Lemma

2.3 X = lirn X(t) exists a.s. Clearly, Z(X) =clPois(F) .Now we notice

,M i e r 
IJ 1111IJ 1 1



thdt T =x(, ) and - a.s. Therefore T T - X a.s. as n- ,
nan n n

which ends the proof of the sufficency part of the theorem.

Now we prove the necessity. Assume that {T n } converges a.s. We have,

for every t

(2.8) N(t)+l : X(t) + Y(t)

~where

Yit =: U + A(t) - A{ y )
, , t) =" )+l ' ( tN(t)+l

B'y Markov p-operty cf :N(s _ O , the random vectors X(t) and Y(t) are

inependert for each t . Since TN t) , T a.s. as t , by (2.E)

S -Xft't))'. is relatively shift compact. In view of (2.6) and Theorem 1.6,*_, -- I' t>3

in [1W F is a Levy measure. The proof is complete.

C)OLLAY 2.5. L- F be a Lwv ojcd Yx"PF(dx) < c" 5c

0 < p < T1 c,; T - T a..s. ,d iki LP f

. Since EX" p < c , E sup ,X(t),P < - by Corollary 3.3 in Hoffmann-
.O<t<

Jorgensen [6] . Hence

E sup 'T E u " P < E sup 11x(t)"P < ®

in',: E s up,:X( n~l _ P ( 1! <

n In O<t<

which ends the proof.

REMARK 2.6. Theorem 2.4, when specified to those Banach spaces for which a full

characterization of Levy measures is known, gives definitive conditions in

terms of the function H for the a.s. convergence of T n} For example, if

.>1 "* ' f1 j



E =R n or miore general, if E is a separable Hilbert space, then
Ol .(IA H'U, V):' 2N(dv)du < -is neccessary and sufficienit for the a.s.

convegence of {T } Similarly, if E = Zp, 2 < p < ,the conjunction ofn

the following two conditions is equivalent to the a.s. convergence of {T }

S (1 A ,P(u, v) 1, P)A(dilil)du <
0O *D

and

r '(H(u, v), ef 2 Hu v))A(dvjdul

where :e: denotes the standard basis (see [13], p. 75).

.~ryl
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3. Conver-ence in some special cases.

In thi*s section we shall discuss some interesting modifications in (1.1)

which are possible when F satisfies certain additional hypotheses.

THEPOPEM 3 1 . tI F , d~id bi,(2.5), iz a L&vu mease oi E .6c'

~that X' x F(dx) < - 'ot.cmz p > 1 .Lct

1

t
C.(t = hu, V)X(dv)du ,t > 0

'0 ~D

Mi (. . C(- ) n > 1 ,! a tna,,tin;3.c xilth *~~:cte
j;1

.. 9" 9 19... n

(ii) Mn -M a. . ai;d ii L a, n
E

(iii) Z(MOO) = c.Pois(F)

Pt,'c'. First note that C(t) is well-defined as a Bochner integral . Indeed,

I rt 1H(u, v)[!X(dv)du < t + r Ju.vjI (H ,v))dlu
JO ~D 'fo ID B c

t + .f l Ix'I1F(dx) <

Put X (t) = Lt H~j &j) - C(t) = XC ) + A(t) - C(t) ,where X(t) is defined
jz1

in the proof of Theorem 2.4. In the proofs of Theorem 2.4 and Corollary 2.5

we have shown that

4'. 4-1 DVrd ,1 {)h
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) %t) -~X a .s . as t -

IX =cPoi s (F) and

O< t<=~

Since

A~t) -C(t) t 1  -J jdFx

as t -~,we conclude that

x 1(t) - 1 a.s., as t

W = cPois(F) and

(3.1) E sup !X (t)"p <
O<t<cc

By Lemmas 2.1 and 2.2, {Xi (t)lt>o is an independent increment process with

right continuous sample paths and EX I(t) - 0 .Moreover, {X I(t))t>O is

adapted to the filtration {Tt 1t>o defined by (2.1) and X I(t+s) - X1 (s) is

independent of Fs . Hence {X (t) Ft }t>O is a martingale. By (3.1) andthQ

Optional Sampling Theorem

M n: x() 0 n 1



form a mar-ingale with respect to T. r .. ,;, ,.. ) and clearly

1- n MC a~. n i E The proof is complete.

THEOREM 3.Z. An. 'atF , {jc c (2.5), i! a Letfmase s~uch tha~t

B 'x'F(dx' < T.,

n
S ~ ., .)-~S. az. a nn - j -j x -

.S ) c Pois(F)

P ~ Since

:'~,v)IRj (H(u, v))X(dv)du Ilf x:F(dx) <

it follows by the Dominated Convergence Theorem that

A(,: n rb x F(dx) a.s., as n

An appeal to Theorem 2.4 completes the proof.

The other case when the centering in 0l.l is not needed occurs when F is

symmetric. From now on {Ej i will be a sequence of i.i.d. random variables

w.such that PE.l 21-PEZ1,-I. Further, we assume that {I}

and {~~are independent of each other.
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THEOREM 3..-. A-.Amc F k' 2 .5), 1tY'irn&V1%.C Lcvy mesi c'-;

E.

n
5 c--jH('g c..) *S . . as nl*
n -j ~'"

:^S)= C Pois(F)

ZL* We car. write

n -3

u > 0 , = (v1, v 2  E -l, 1) x D .We have

3, 1 ~ +. i 5)x~

Thus

= f f I AN{01 3(u. 'V))A"d V)du
0 i-i ,l >0

and

f~ t r
A(+1 z Hi(w, V)IB M~u, W))(d')dJ 0

0 1-,1 >D
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for every t > 0 . Theorem 2.4 completes the proof.

Rando centers A n= AC: n ) in (1.l) provide a fine connection between

the centered sums and the associated compound Poisson process. Random centers

A a C(6 ) are also necessary for the martingale property in Theorem 3.1.n n
Nevertheless, it is an interesting question whether random centers can be re-

placed by non-random ones and the a.s. convergence still would hold? We could not

answer this question in its full generality but under certain additional con-

ditions the answer is yes. To procede this question we begin with a lemma that

is a special case of Lemma 4 in Klass and Ferguson [4]. We shall give below

a short proof of this lemma and also indicate that our method can be easily

extended to obtain a new and short proof of Lemma 4 in [4].

LENA 3.4. L_-:' g t, a & tegtabtcaLne 'wt o ...... u

4.n

g(u)du - O a.., n -=

P . We have

(3.2) ng(u)dtl < g(YnAn) lyn -n

by the monotonicity of g , further, by the Strong Law of Large Numbers we have

with probability one:

(3.3) g(>nm) < g(-2) eventually.

Using Hajek-Renyi-Chow inequality 13] p. 243 we get, for every c > 0

111 1r .11W I I I~ N."''1 % .%

--- MM.
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F7max g(.) 'k 2 _2( J2  g
2 km

as m , n -- Thus g )' n - n: 0 a.s., which combined with (3.2) and

(3.3) competes the proof.

THECREN 3.5. ';, ,zt F , b. (2.5), i5 a Lavy mcac cn E

(AA 1 )F(dx) fha. S, 6ol each., v r, D , H(u, v);: i's a

-Let

A(-. ) " A(n) i n  K F(uv)~l (H(uv))X(dv)du
n n -n 0 1

and

g(u) = (' H(u,)','2  A 1)X(dv))}/2

g is non- increasing,

g 2(u)du = 2 A 1)F(dx) < ,

and we have

I w~ Ea
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(,nuv) A )>.(dv)dj
*n JD

nn

completes the proof.

N III

I p 1 0 It
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4. Series representations of infinitely divisible random vectors.

Let F be a Borel measure on E with F(;Q'I) =0 . We say that F admits

a c dczx ~:m;'-- Ztkc,: xL: csj-,z t, a &,.-Lei 5c~t D ,0 A D C E , if

(4.1) F(A) I *tx)0(xJ(0 ),dx)A A a BE

where ~ easurable family of Borel measures on (0, )ad'

is a Borel probability measure on D The phrase "pcZat dccompcsitioc." will

always mean a polar decomposition with respect to the unit sphere 0 S1

E e : .A.=

A polar decomposition of L'evy measures on Hilbert spaces and its application

to stochastic integral representations of infinitely divisible processes were

studied by Rajput and Rosinski J713. W'e shall show here that also Levy measures

on general Banach spaces admit polar decompositions so that (4.1) can always be

assumed. In fact, we shall prove more:

PROSTITITiCn, 4.1. Lc- H a Bc-,eE~ Yneas.utc on E 4uch tha~t MC{O)) = 0 ard

M(Sc) <~ zt-Z-y r > 0.Thei: M admts~t a pctov'i decompo.sLt.Zn.

LjLj If F E0 ,then (4.1) holds trivial~y with p(..,. 0 and an

arbitrary 'A*Therefore we may assume that 0 <F(E) C We shall con-

striact a Borel function f: 10, 1* 0, -) that vanishes only at 0 and

satisfies

f(,,xi)F(dx) - 1

Let r0  infir; M(B c 0" Q < r0 < .Definer



2C

le tM(BI)J if 0 < t < r0

0 otherwise.

Put ~ ~ r 1~u (1- Wtdt .f vanishes only at 0 and

Put-r -1u 0 e )

=E j1 - E jo (t)dl;M(dx)

-r 1 ; Cdl ( ) M ~ x d
ejo JE ' (0,IlxiA;)

e-r 0 r e- t

Define now a probability measure G on E by G(dx' f( ,x,')M(dx) .Since

G(10':) =0 , G .. is a probability measure on Sl x (0, -c) , where G

G ,and E\iCi S1 x (0, -) is defined by , (x) = X~

Let X' be the marginal distribution of G -l given by

,(B) = (G C.1 )(B x (0,.c) B e

Using the well-known fact on the existence of regular conditional probabilities

we get that there exits a measurable family {v(x, -)XS1of probability

measures on (0, m)such that, for every C a _ IQ -)

Hence, for every A a IE
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G(A) G G(A\ 0i-) =t),(~d)~x

which yielcs

F(A) = _ _ _ _

jA f ) G~dxl

1
?TFI A(tx)v(x,dt)X(dx)

!,)'(x dt)

Therefore ',4.1) is fulfilled with j:x dt) = A (xdt)

PROPOSITION 4.2. Lct F be a Bo~tc measute. ons E .6a~twLy C.4.1). Let-, 'c,

SV f

(4.2) R(u, v) E nfit > 0: p(v, (t, co)) < u} u > 0

beAie tjig -" coakt,6uomsL 4.JveA.e oj th. Junc-tion t *p~v., (.t, -Go)) Thenz -thc

6Laxtca.4b H de'iin.d by

H(i;, v) 7-R(u, Y)v

,bti;- (2.5).

Ptc''l For every A F Ewe have
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D A\ 0. (R(u, v)v).k(dv)du =

0'D IA\ O0 (R'u, v)v)du]X(dv) =

*D'jO IA\.ci.tv)(, dt)JA(dv) - F(A)

where we utilized the fact that Leb({u > 0: R(u, v) e (t, t)}) = mv, (t, -))

t>o.

The results of sections 2 and 3 when specified to the case H(u, v) =

Ru, v)v give the following generalizations of the LePage's result ([II,

Theorem 2).

COROLLARY 4.3. Let . b. ai: Zi tei dviZsibie p.obabZ (u meaute 0;1 E

(4.3) = 6a * cI POs(F)

c, a a E ai d F i5 a Luy mca5u4C, Asume tJht F admi t a poLka decom-
n

1.,,. -j (4.1) aad ic. R be deincd by(4.2). PUIt Sn =zjl Ry., and

A~t) = IJ JR(u~v)vraCR(u~vW)YA(dv)du ,t > 0

Then

(1) Sn n A(-,) cc.tga.s. , a. n a- , ad , (1im[SnA(yn)+a]),. 16
r

xF,(dx) < c .eme p > 0 , then the cC 'CrgI1ce hoids af-S.

.EE- Lp
= L E

I IM115-WI
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Ui) ~(1 x )Fd) , :S - AC,, .a*, '

ii i 1 x,F (dx) < thci: S ccnve71-,ge,6 .5., as n -, o and
JBI n

X(lim S +a) i whete a0 = a - BxF (dx) In addiLton S

cove-Lges .1n LE rpovided r' lxi lwdx) < 6, o L -some p > 0.

Jv) 1P p~j(dx) < o, p > 1 , thcii M S, C( )

M nz~t a,: Z ;, Lp E, as~ n ,nd =m +a

6- a + xFd)and

C(z, R'u, v)vA*(dv)du , t > 0

%n
(V) i .& Z tiCi: S n =j)]. R(.'., i conv.e,%e a..s. as

ni -~ d Z(l I i 7R. iN add&tien, E~ cw~ nL 'c.ZcIn
.x! '.d x) <- , 'c, some p > 0

P-c Indeed, by Proposition 4,2 tie equality (2.5) is satisfied. Thus, (i)

follows from Theorem 2.4 and Corollary 2.5; Cii) is a consequence of Theorem 3.5;

Theorem 3.2 justifies the first part of (iii) and the second part follows from Corollary

2.5 and the observation that l;A(y )11 is uniformly bounded by Jj 'lxIF(dxl

(iv) is a corollary to Theorem 3.1; (vJi follows from Theorem 3 .3 aL, Corollary

2.5. The proof is complete.

A few comments is now in order. First note that Corollary 4.3(t) and (ii)

generalize LePage's Theorem 2 11]3 by removing the restriction concerning

the geometry of Banach space E and in our case D may be an arbitrary Borel set. This

makes the representation useful in investigation, for example, general infinitely

divisible processes with sample paths in arbitrary Banach spaces. The results on the

[. V.-
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L. -conver:-nce and the martingale development given in (iv) are also new. Finally,

we note that the centering constants in LePage [11], Theorem 2, are erroneous . They

should be assumptotically equal to A(n).

The representation of p. becomes simpler when a polar decomposition of

VF is of product type for some D , i.e.

.4for all A II E~ In this case, I:Lx, ) C) is the same Levy measure

for all x's

LEMMA 4.4. LtF 6,: r Levy rca 4. 01: E Ericci .5ts'e (4.4), wec D i-c~

&ou, ed T;, t (: x 1 A 1 ) F(dx) < o

SLet d =supi ,x,,: x f D ., We have

C A 1 )F(dx) 1o(dt?.2~

22 A l)P(dt) <

The above lmandCorollary 4,3(ii) give the following

COROLLARY 4.5. Le~t p be given by (4.3) and te.t F admit decompozition (.4.4)

ucZUh D bcwided. Vedine

P Iu) =inf;,t > 0: jIt o) < u! , u >0
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n
7 - + a..T a.-s.s, c o

cui~d 01WT) .,

b n IR(u) ;V1 (R'u)vY ,(dv)]du

EXAMPLE: General stable distributions.

Let .be a p-stable probability measure on E ,0 < p < 2 .In view of

Levy spectral representation theore-. there exists a finite Borel measure

on S1  and xE E such that the characteristic function i of j.can be

written as follows:

(4.5) --,(x') =expi-! 1(x',xIP,(dx) + iQ (O~X) + i(x',x N1

where

'tan(7ip/2) , ~'.~~inx,~~x p 0 1

J2- (x',x> nI(x',x)Io(dx) ,p = I

(for this and further facts concerning stable measures we refer the reader to

Linde 113.J, Chapter 6.3). In order to obtain series representation of 11 we

write -, in the form (4.3). Elementary computations give



X,-( *%.l-j/) I (S)x ,P I

an~a

x-(dx) /,7,(S 1)

Further, we can represent the Levy measure F of p. as follows:

F%'A) c (1 lCc- I A(tx)f 1Pdt c(dx)

jS1 (O,'c) IA(xpd)~

where p(dt) = c~ p o(S 1)t 1-Pdt , X(dx) a a(dx)/c(Sl) . Therefore, the

assumptions of Corollary 4.5 are satisfied, and we compute

R(u) =d /(I)U /

where dp = (PC )- /p , and, for n > dP a(S),
p

= p/(p-fltd c' I/(S )n'-/ -P c(S1)470  p 0 1

12/tInn -Zn(2/7 o)c(.GS 1)70 p
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Under the above notations, using Corollaries 4.5, 4.3(iii and (iv), we

obtain

*COROLLARY 4.6. Let i be a p-s.tabie p.'babZity meo.sw-e on E wi~th the

chat, -tie 6unct2cn give~n by (4.5), 0 < p < 2 .Let

V n= d a1 ' jS) T 1 Yj - kl(n).x + x0

J/) I1 -l 1-1 /p I 1< p < 2

kkn t + n(d C(S I),

Thenk' V = Mm V ne~sts a.4. anvd ZP(V) = i.FwLtheit, jot 1 < p < 2 pu

Mn= ~ 1 '~S1 { -/- k(-y ) + x0

rTie. M4 nis a maAt4.bte with tez..per-t tocC- ...l~ 9'nt'l*...'Jn~ In >

M4 = lrn M exista a.z. and in L q6teey0<q<padGL

EXAMPLE: Symmetric semistable measures.

We recall that an infinitely divisible measure pi on E is said to bea

(r,p)-semistable probability measure (0 <r < 1, 0 < p < 2) if

Lt (r1 0 P xj for some x0e E
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Here, the :aeastire a is defined by (a c 4;(B) jj'-IB) , B F , a # 0

The spectral representation of characteristic function of semistable measures

was obtained independently by Krakowiak .f9] and by Rajput and Rama-Murthy 116],

which, in the symmetric case, reduces to the following:

(4.6) .;(xl) = expz' n- 1co(n/ r ~ lj-Cdx)

where c is a finite symmetric measure on L Ix c E: r </cX <

Since

(x)=expl, [ cos(x' tx)- vdtz()I

*where is a discrete measure concentrated on the set ir : n s ZZ' Such tht

I.( rn;) = r , n e 2Z, we conclude th~at (4.4) is satisfied with ~x

(L):(dx) and :(dt) = :.-)%,(dt) . Now by elementary computations we obtain

R(u) = [(h/r - 1)Z- (.)uY 1/ " ,

where [t] r = r k ifr rk < t < r k-1 In view of Corollary 4.3,(.v) we get

that

n -1 j- /P S a
* (4.7) e [j(l/r - ~~(A) -~r ~as

3=1

and in LE , for every 0 < p , and Z(S) *u.We have obtained a series

representation of semistable random vectors in the symmetric case.

Now we note that the multipliers in (4.7) are bounded both sides, up to a con-

stant multiplier, by cl/P(L.)-, 1/ , because rt < t~r .1t , t > 0 .Further.



p-stab'ie limit is obtain in 14.7) when one replaces £Cl/r - Ir('. by

V. r~: ~ Tnis, in conjunction with the contraction principle, explains

W~y the moment properties of stable and semistable distributions are so

closely re-,ated. Using a different method of stochastic integeral this obser-

vation was also justified in Rosinski [20] p. 67-68 and comparisons of

moments of stable and semistable measures were given.
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